Chem. Ber. 107, 2468-2472 (1974)

Über Reaktionen von N-Halogen-Stickstoff-Schwefel-Fluor-Verbindungen mit Hexafluorpropen und Bis(trifluormethyl)diazomethan

Jürgen Varwig, Rüdiger Mews und Oskar Glemser*

Anorganisch-Chemisches Institut der Universität Göttingen, D-3400 Göttingen, Hospitalstr. 8/9

Eingegangen am 1. März 1974

Die radikalische Addition von CINSOF₂ an Hexafluorpropen führt zu $F_3C-CFCI-CF_2NSOF_2$ (1a) und $F_3C-CF(NSOF_2)-CF_2CI$ (1b); $CIN(SO_2F)_2$ ergibt nach einem vermutlich polaren Mechanismus ausschließlich $F_3C-CFCI-CF_2N(SO_2F)_2$ (2). Mit $(CF_3)_2CN_2$ gelingt der Einschub von $(CF_3)_2C$ in die N-Halogen-Bindungen von CINSF₂, BrNSF₂, CINSOF₂ und CIN $(SO_2F)_2$ unter Bildung von $(CF_3)_2CCINSF_2$ (3), $(CF_3)_2CBrNSF_2$ (4), $(CF_3)_2CCINSOF_2$ (5) und $(CF_3)_2CCIN(SO_2F)_2$ (6).

Reactions of N-Halogeno-Nitrogen-Sulphur-Fluorine Compounds with Hexafluoropropene and Bis(trifluoromethyl)diazomethane

The radical addition of CINSOF₂ to hexafluoropropene yields $F_3C - CFCI - CF_2NSOF_2$ (1a) and $F_3C - CF(NSOF_2) - CF_2CI$ (1b); CIN(SO₂F)₂ reacts by a presumably polar mechanism to give exclusively $F_3C - CFCI - CF_2N(SO_2F)_2$ (2). With (CF₃)₂CN₂ insertion of (CF₃)₂C into the N-halogen bond of CINSF₂, BrNSF₂, CINSOF₂, and CIN(SO₂F)₂ is possible with formation of (CF₃)₂CCINSF₂ (3), (CF₃)₂CBrNSF₂ (4), (CF₃)₂CCINSOF₂ (5), and (CF₃)₂CCIN(SO₂F)₂ (6), respectively.

Die Chemie der N-Halogen-Stickstoff-Schwefel-Fluorverbindungen X-NRR'(Halogen = Chlor, Brom) ist gekennzeichnet durch die relativ schwache, z. T. auch stark polare N-X-Bindung¹⁻³). Präparativ lassen sich diese Eigenschaften allgemein für zwei verschiedene Reaktionstypen ausnutzen⁴):

a) Zur homolytischen Spaltung der N-X-Bindung und Addition der entstehenden Radikale an ungesättigte Systeme gemä β (1).

b) Zur polaren Addition gemäß (2).

$$\sum_{N-X} + \sum_{i=1}^{N-X} \sum_{i=1}^{N-i} \sum_{j=1}^{N-i} \sum_{i=1}^{N-i} \sum_{j=1}^{N-i} \sum_{j$$

$$\sum_{N-X}^{b-b+} + \sum_{B}^{A} \sum_{C=C}^{b+b-C} \longrightarrow \sum_{B=D}^{A-C} \sum_{D}^{C-X}$$
(2)

¹⁾ J. K. Ruff, Inorg. Chem. 5, 732 (1966).

²⁾ R. Mews und O. Glemser, Chem. Ber. 102, 4188 (1969).

³⁾ R. Mews und O. Glemser, Inorg. Nucl. Chem. Lett. 5, 321 (1969).

⁴⁾ R. Mews und O. Glemser, Chem. Ber. 104, 645 (1971).

δ

 $ClN(SO_2F)_2$, in dem eine besonders stark polare N-Cl-Bindung vorliegt, kann auch Reaktionen in der Art eingehen, wie sie für Hypochlorite bekannt sind¹⁾.

 $CIN = SF_2$ reagiert mit Hexafluorpropen bei Bestrahlung nach (1)²⁾, s. Gleichung (3). Ebenfalls radikalisch wird CINSOF₂ addiert, Gleichung (4).

$$C1N=SF_2 + F_3C-CF=CF_2 \xrightarrow{UV} F_3C-CFC1-CF_2N=SF_2 + F_3C-CF(N=SF_2)-CF_2C1 (3)$$
(77%)
(23%)

CINSOF₂ + F₃C-CF=CF₂
$$\xrightarrow{UV}$$
 F₃C-CFCl-CF₂NSOF₂ + F₃C-CF(NSOF₂)-CF₂Cl (4)
1a (82%) 1b (18%)

Für radikalische Additionen an das $F_3C - CF = CF_2$ ist bekannt⁵⁾, daß der primäre Angriff auf C-1 oder -2 nicht nur von der Stabilität des intermediär gebildeten Radikals $F_3C - CF - CF_2 - N'_{2}$ bzw. $CF_3 - CF(N'_{2})CF_2$ abhängt, sondern auch in starkem Maße von dem Charakter des angreifenden Radikals. Entsprechend der Polarität im $\delta^{-} = \delta^{+}$ $F_3C - CF = CF_2$ sollten Nucleophile bevorzugt die CF₂-Gruppe angreifen. Den obigen Ergebnissen nach ist das $\cdot NSOF_2$ -Radikal etwas nucleophiler als das $\cdot NSF_2$ -Radikal. $CIN(SO_2F)_2$ wird an Hexafluorpropen bereits bei 70°C addiert, man beobachtet nur das nach einem polaren Mechanismus [Gl. (2)] erwartete Produkt:

$$b + b^{-}$$

 $Cl - N(SO_2F)_2 + F_3C - CF = CF_2 \xrightarrow{70^{\circ}C} F_3C - CFCl - CF_2N(SO_2F)_2$ (5)
2

Mit Hilfe des Bis(trifluormethyl)diazomethans, $(CF_3)_2CN_2$, lassen sich durch Einschub von $(CF_3)_2C$ in die N-X-Bindung weitere Isomere der vorher erwähnten Verbindungen darstellen, die über Alkene nicht zugänglich sind:

$$(CF_{3})_{2}CN_{2} + CINSF_{2} \xrightarrow{120^{\circ}C} (CF_{3})_{2}CCINSF_{2}$$

$$(6)$$

$$3$$

$$+ BrNSF_{2} \xrightarrow{60^{\circ}C} (CF_{3})_{2}CBrNSF_{2}$$

$$4$$

$$+ CINSOF_{2} \xrightarrow{40^{\circ}C} (CF_{3})_{2}CCINSOF_{2}$$

$$5$$

$$+ CIN(SO_{2}F)_{2} \xrightarrow{<-20^{\circ}C} (CF_{3})_{2}CCIN(SO_{2}F)_{2}$$

$$6$$

Der Einschub erfolgt unter Bedingungen, bei denen weder der Zerfall der Diazoverbindung in das Carben⁶⁾ noch die Spaltung der N-X-Verbindungen in Radikale beobachtet wird. Es ist also anzunehmen, daß die Reaktion nicht über diese Zwischenprodukte verläuft.

⁵⁾ J. F. Harris jr. und F. W. Stacey, J. Amer. Chem. Soc. 83, 840 (1961).

⁶⁾ D. M. Gale, W. J. Middleton und C. G. Krepsan, J. Amer. Chem. Soc. 88, 3617 (1966).

Über Reaktionen von Diazoverbindungen mit *N*-Halogenamiden oder -imiden liegen nur wenig Untersuchungen vor. *N*-Halogensuccinimide reagieren mit CH_2N_2 unter Bildung der entsprechenden *N*-Halogenmethylderivate⁷).

$$\begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ -N_{2} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ \downarrow \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \\ C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ \downarrow \end{array} \xrightarrow{} \begin{array}{c} C - C^{\neq O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O \end{array} \xrightarrow{} \begin{array}{c} C - C^{\to O} \\ O$$

Als primärer Schritt wird ein elektrophiler Angriff des positivierten Halogens an das Kohlenstoffatom des $\overline{C}H_2N_2$ vorgeschlagen:

$$\sum_{N-X}^{b-b+} + \stackrel{\odot}{_{\rm IC}} H_2 - N_2^+ \longrightarrow \left[\stackrel{\sim}{_{\rm I}} \stackrel{\circ}{_{\rm IC}} XC H_2 N_2^+ \right] \xrightarrow{H}_{-N_2} \stackrel{H}{\underset{H}{\longrightarrow}} \stackrel{H}{\underset{H}{\longrightarrow}}$$
(8)

Da die Reaktivität der hier verwendeten N-Halogenderivate gegenüber $(CF_3)_2CN_2$ etwa parallel zur Polarität der N-X-Bindung verläuft, ist ein polarer Mechanismus, ähnlich Gl. (8), wahrscheinlich.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für Unterstützung.

Experimenteller Teil

NMR-Spektren: Varian A 56/60-Spektrometer (CFCl₃ ext. Stand.); Massenspektren: CH 4- bzw. in Verbindung mit einem Gaschromatographen mit einem CH 5-Gerät der Atlas-Werke; IR-Spektren: Perkin-Elmer-Spektrophotometer 325 (12-cm-Gasküvette, AgCl-Fenster).

Die Elementaranalysen (s. Tabelle) führte das Mikroanalytische Labor Beller (Göttingen) durch.

Die Ausgangsverbindungen CINSF $_2^{8,9}$, CINSOF $_2^{8,10,11}$, CIN(SO $_2F$) $_2^{1}$, BrNSF $_2^{9}$ und (CF₃) $_2$ CN $_2^{6}$) wurden nach der Literatur dargestellt, CF $_3$ CF=CF $_2$ von der Fa. Peninsular Chem. Research, Gainesville, Florida, bezogen.

N-(2-Chlor-1,1,2,3,3,3-hexafluorpropyl)schwefeloxiddifluoridimid(1a) und N-[1-(Chlordifluormethyl)-1,2,2,2-tetrafluoräithyl]schwefeloxiddifluoridimid(1b): 6.8 g (0.05 mol) CINSOF₂ und 9 g (0.06 mol) CF₃CF = CF₂ werden 17 h unter Kühlung mit Leitungswasser mit einer Hg-Hochdrucklampe in einer Glasbombe bestrahlt. Man erhält eine wasserklare Flüssigkeit, Sdp. 44-45°C/200 Torr, Ausb. 11 g (77%, bezogen auf CINSOF₂). Im analytischen Gaschromatographen wurde ein Isomerenverhältnis 1a:1b wie 82:18 ermittelt. Die Trennung größerer Mengen gelang nicht. Das IR-Spektrum des Gemisches 1a/1b zeigt die erwarteten starken Banden im Bereich der N=S-O-, CF- und SF-Valenzschwingungen. Die Massenspektren der beiden Isomeren konnten getrennt aufgenommen werden (Kopplung Gaschromatograph/Massenspektrometer).

MS von 1a, CF₃CFClCF₂NS(O)F₂: 268/266 (M -F)⁺, 250 CF₃CFCF₂NS(O)F₂⁺, 218/216 CFClCF₂NS(O)F₂⁺, 200 CF₃CFNS(O)F₂⁺, 185 CF₃CFClCF₂⁺, 168/166 CFClCFNS(O)F₂⁺, 150 CF₂NSOF₂⁺, 87/85 CF₂Cl⁺, 86 SOF₂⁺, 70 SF₂⁺, 69 CF₃⁺, 67 SOF⁺, 51 SF⁺, 50 CF₂⁺, 48 SO⁺, 46 NS⁺, 32 S⁺, 31 CF⁺.

10) O. Glemser, R. Mews und S. P. v. Halasz, Inorg. Nucl. Chem. Lett. 7, 821 (1971).

⁷⁾ R. A. Corral und O. O. Orazi, Tetrahedron Lett. 1964, 1693.

⁸⁾ J. K. Ruff, Inorg. Chem. 5, 1787 (1966).

⁹⁾ O. Glemser, R. Mews und H. W. Roesky, Chem. Ber. 102, 1523 (1969).

¹¹⁾ K. Seppelt und W. Sundermeyer, Z. Naturforsch. 26B, 65 (1971).

MS von 1b, CF₃CF[NS(O)F₂]CF₂Cl: 268/266 (M -F)⁺, 250 CF₃CF[NS(O)F₂]CF₂⁺, 218/216 CF₂ClCFNS(O)F₂⁺, 200 CF₃CFNS(O)F₂⁺, 185 CF₃CFCF₂Cl, 168/166 CFNS(O)F₂-CFCl⁺, 150 CF₃CFCF₂⁻, 87/85 CF₂Cl⁺, 86 SOF₂⁺, 70 SF⁺, 69 CF₃⁺, 67 SOF⁺, 51 SF⁺, 50 CF₂⁺, 48 SO⁺, 46 NS⁺, 32 S⁺, 31 CF⁺.

Die in den beiden Spektren auftretenden Massenzahlen sind gleich, ein Unterschied ergibt sich aus dem Vergleich einzelner Intensitäten.

Bruchstücke		268/266	250	218/216	200	150	87/85
rel. Inten-	1 a	0.6/1.9	0.2	0.2/0.5	1.4	100	2.2/6.5
sität (%)	1 b	0.6/1.8	42	8/25	100	90	13.0/37.5

¹⁹F-NMR: **1a**: CF₃/CF₂ $\delta = +79.6 \pm 0.9$ ppm, CF +140.2, SF -48.4 wie 5:1:1. - **1b**: CF₃ $\delta = +80.8$ ppm, CF₂ +69.3, CF +139.6, SF -50.3 wie 3:2:1:1.

N - (2 - Chlor - 1, 1, 2, 3, 3, 3 - hexafluor propyl) imidodisulfuryl fluorid (2): 16 g (0.074 mol)CIN(SO₂F)₂ und 14 g (0.093 mol) CF₃CF = CF₂ werden in einer abgeschmolzenen Glasbombe26 h bei 70°C gerührt. Das Reaktionsgemisch wird fraktioniert i. Hochvak. kondensiert,anschließend unter Stickstoff destilliert. 2 ist eine wasserklare Flüssigkeit, Sdp. 47°C/10 Torr,Ausb. 26.5 g (95%, bezogen auf CIN(SO₂F)₂).

Massenspektrum (*m*/*e*, Bruchstück, rel. Intensität): $367/365 \text{ M}^+$ (0.04/0.1), $348/346 (M - F)^+$ (0.2/0.8), $330 (M - Cl)^+$ (0.4), $244 \text{ CF}_3\text{CFCNSO}_2\text{F}^+$ (1), $230 \text{ CF}_2\text{N}(\text{SO}_2\text{F})^+_2$ (49.8), $187/185 \text{ CF}_3\text{CFClCF}_2(31.1/100), 164 \text{ N}(\text{SOF})\text{SO}_2\text{F}^+$ (43.2), $150 \text{ CF}_3\text{CF}_3\text{C}^+$ (2.5), $137/135 \text{ CF}_3\text{CFCl}^+$ (5.1/15.5), $131 \text{ CF}_3\text{CF}_2\text{C}^+$ (3.5), $128 \text{ CFNSO}_2\text{F}^+$ (31), $118/116 \text{ CF}_2\text{CFCl}^+$ (2.6/8), $100 \text{ CF}_3\text{CF}^+$ (9.1), $87/85 \text{ CF}_2\text{Cl}^+$ (18/54), $83 \text{ SO}_2\text{F}^+$ (4.5), 81 NSOF^+ (2), 69 CF_3^+ (84.9), 67 SOF^+ (34.1), $68/66 \text{ CFCl}^+$ (1.3/4.1), 64 SO_2^+ (2.5), 51 SF^+ (1), 50 CF_2^+ (2.5), 48 SO^+ (7.6), $49/47 \text{ CCl}^+$ (1/3.1), 46 NS^+ (6), $37/35 \text{ Cl}^+$ (0.1/0.4), 32 S^+ (0.4), 31 CF^+ (5.6). $- \text{ IR}: 1503 \text{ (st)}, 1482 \text{ (m)}, 1458 \text{ (st)}, 1423 \text{ (st)}, 1249 \text{ (sst)}, 1230 \text{ (sst)}, 1135 \text{ (st)}, 1090 \text{ (st)}, 965 \text{ (sst)}, 876 \text{ (m)}, 835 \text{ (st)}, 811 \text{ (m)}, 768 \text{ (schw)}, 728 \text{ (m)}, 625 \text{ (schw)}, 570 \text{ (st)}, 460 \text{ cm}^{-1} \text{ (schw)}. - 19\text{F-NMR}: \text{CF}_3/\text{CF}_2 \delta = +79.3 \text{ ppm}, \text{SF}_A - 59.7, \text{SF}_B \cdot 57.6, \text{CF} + 141 \text{ wie } 5:0.9:0.9:1.$

N-[1-Chlor-2,2,2-trifluor-1-(trifluormethyl)äthyl]schwefeldifluoridimid (3): Darstellung und Aufarbeitung wie bei 2. 7.2 g (0.06 mol) CINSF₂ und 11.1 g (0.062 mol) (CF₃)₂CN₂ ergeben nach 20 h bei 120°C 5 g 3 (32%, bezogen auf CINSF₂), farblose Flüssigkeit, Sdp. 71°C.

Massenspektrum (*m*/*e*, Bruchstück, rel. Intensität): 252/250 (M – F)⁺ (1.0/3.2), 234 (M – Cl)⁺ (16.4), 215 CF₃CF₂CNSF⁺₂ (0.5), 202/200 CF₃CClNSF⁺₂ (15/52.2), 196 CF₃CF-CNSF⁺₂ (2.1), 187/185 (CF₃)₂CCl⁺ (0.7/2.1), 184 CF₃CFNSF⁺₂ (9), 150 (CF₃)₂C⁺ (5.3), 146 CF₃CNSF⁺ (7.5), 137/135 CF₃CFCl⁺ (0.8/2.6), 134 CF₂NSF⁺₂ (8), 87/85 CF₂Cl⁺ (2.3/7), 76 CF₂CN⁺ (5), 70 SF⁺₂ (43.6), 69 CF₃⁺ (100), 51 SF⁺ (13.2), 50 CF⁺₂ (4.2), 46 NS⁺ (13.9), 37/35 Cl⁺ (0.15/0.5), 32 S⁺ (3.7), 31 CF⁺ (4.2). – IR: 1435 (m), 1410 (sst) vS=N, 1284 (sst), 1243 (sst), 1185 (m), 1113 (schw), 1002 (m), 989 (m), 960 (st), 942 (st), 748 (sst) v_SS-F, 930 (st), 720 (st), 696 (sst) v_{as}S-F, 598 (schw), 558 (schw), 538 (schw), 417 cm⁻¹ (m). – ¹⁹F-NMR: CF₃ $\delta = +78.9$ ppm, SF₂ – 56.6 wie 3:1.

N-[1-Brom-2,2,2-trifluor-1-(trifluormethyl)äthyl]schwefeldifluoridimid (4)

a) Thermische Reaktion: Darstellung und Aufarbeitung wie bei 2. 9.8 g (0.06 mol) $BrNSF_2$ und 11.1 g (0.062 mol) (CF₃)₂CN₂ ergeben nach 5 h bei 60°C 4.0 g 4 (22%, bezogen auf $BrNSF_2$), Sdp. 50-52°C/140 Torr.

b) Bestrahlung: Die Bestrahlung von 4.8 g (0.03 mol) $BrNSF_2$ und 5.6 g (0.032 mol) (CF₃)₂CN₂ in einer abgeschmolzenen Quarzbombe mit einer Hg-Hochdrucklampe unter Kühlung mit Leitungswasser ergibt nach 6 h 2.5 g 4 (28%, bezogen auf BrNSF₂).

Massenspektrum (*m/e*, Bruchstück, rel. Intensität): 296/294 (M – F)⁺ (3.6), 246/244 (M – CF₃)⁺ (2.7), 234 (CF₃)₂CNSF⁺₂ (100), 231/229 (CF₃)₂CBr⁺ (3.1), 215 (CF₃)₂CNSF⁺

(6.3), 196 CF₃CFCNSF⁺₂ (3.4), 184 CF₃CFNSF⁺₂ (19.3), 146 CF₃CNSF⁺ (11.6), 134 CF₂NSF⁺₂ (8), 131/129 CF₂Br⁺ (3.1), 81/79 Br⁺ (2.2), 76 CF₂CN⁺ (4.9), 70 SF⁺₂ (86), 69 CF⁺₃ (91), 51 SF⁺ (18.1), 50 CF⁺₂ (5.1), 46 NS⁺ (21.2), 32 S⁺ (4.5), 31 CF⁺ (5.1). - IR: 1425 (sst), 1410 (sst) vS = N, 1274 (sst), 1233 (sst), 1164 (schw), 998 (schw), 942 (st), 898 (st), 838 (schw), 742 (sst) v_SS - F, 717 (st), 692 (sst) v_{as}S - F, 568 (schw), 542 (schw), 418 cm⁻¹ (m). - ¹⁹F-NMR: CF₃ $\delta = +76.5$ ppm, SF₂ --55.9 wie 3:1.

N-[1-Chlor-2,2,2-trifluor-1-(trifluormethyl)äthyl]schwefeloxiddifluoridimid (5): Darstellungund Aufarbeitung wie bei 2. 5.15 g (0.038 mol) CINSOF₂ und 7.5 g (0.042 mol) (CF₃)₂CN₂ergeben nach 12 h bei 40°C 2.0 g 5 (19%, bezogen auf CINSOF₂), Sdp. 44-46°C/200 Torr.Die Reinigung erfolgt zusätzlich durch Gaschromatographie.

Massenspektrum (*m*/*e*, Bruchstück, rel. Intensität): 268/266 (M $\cdot -F$)⁺ (8/25), 250 (M -Cl)⁺ (84), 218/216 CF₃CCINSOF⁺₂ (35/100), 150 CF₃CF₂CF⁺ (10), 87/85 CF₂Cl⁺ (20/60), 86 SOF⁺₂ (33), 76 CF₂CN⁺ (41), 70 SF⁺₂ (23), 69 CF⁺₃ (97), 67 SOF⁺ (65), 51 SF⁺ (17), 50 CF⁺₂ (44), 48 SO⁺ (36), 46 NS⁺ (11), 37/35 Cl (4/12), 32 S⁺ (10), 31 CF⁺ (20). - 1R : 1480 (sst) v_{as}N-S = 0, 1450 (st), 1348 (m) v_sN-S = 0, 1325 (m), 1278 (st), 1242 (st), 1180 (m), 1029 (st), 955 (st), 927 (st), 875 (m), 848 (st) v_sS-F, 818 (st) v_{as}S-F, 750 (m), 718 (st), 625 (schw), 612 (schw), 572 (schw), 555 (schw), 531 (m), 500 cm⁻¹ (schw). - ¹⁹F-NMR : CF₃ δ = +79.6 ppm, S(O)F₂ - 49.6 wie 3:1, J(CF₃-S(O)F₂) 2.3 Hz.

N-[1-Chlor-2,2,2-trifluor-1-(trifluormethyl)äthyl]imidodisulfurylfluorid (6): Die Reaktionvon 7.6 g (0.035 mol) ClN(SO₂F)₂ mit 7.1 g (0.04 mol) (CF₃)₂CN₂ erfolgt nach dem Einkondensieren in die Glasbombe bereits beim Auftauen sehr rasch und ergibt 12 g 6 (95%, bezogenauf ClN(SO₂F)₂) als wasserklare, hydrolyseunempfindliche Flüssigkeit, Sdp. 48°C/10 Torr.

Massenspektrum (*m*/*e*, Bruchstück, rel. Intensität): $367/365 \text{ M}^+$ (0.8/3.2), 348/346 (M $-\text{F}^+$ (0.2/0.6), $330 \text{ (M} - \text{Cl})^+$ (1.8), $298/296 \text{ (M} - \text{CF}_3)^+$ (1.8/5.5), $244 \text{ CF}_3\text{CFCNSO}_2\text{F}^+$ (0.6), $187/185 \text{ (CF}_3)_2\text{CCl}^+$ (100), $180 \text{ N}(\text{SO}_2\text{F})_2^+$ (7), $166 \text{ (SO}_2\text{F})_2^+$ (7), $164 \text{ NSOFSO}_2\text{F}^+$ (49), $147 \text{ FSO}_2\text{SO}^+$ (8.5), $137/135 \text{ CF}_3\text{CFCl}^+$ (2/6), $131 \text{ CF}_3\text{CF}_2\text{C}^+$ (3), $118/116 \text{ CF}_3\text{CCl}^+$ (1/3), $100 \text{ CF}_3\text{CF}^+$ (4.5), $97 \text{ NSO}_2\text{F}^+$ (18), $89/87 \text{ CF}_2\text{Cl}^+$ (22/65), $83 \text{ SO}_2\text{F}^+$ (20), 81 NSOF^+ (1), $76 \text{ CF}_2\text{CN}^+$ (10), 69 CF_3^+ (69), 67 SOF^+ (41), 64 SO_2^+ (18), 51 SF^+ (27), 50 CF_2^+ (7), 48 SO^+ (12), 46 NS^+ (7.5), $37/35 \text{ Cl}^+$ (0.3/1), 32 S^+ (10.5), 31 CF^+ (5), 30 NO^+ (6.8). - IR: 1458 (st), 1417 (st), 1285 (st), 1228 (st), 1020 (st), 980 (m), 960 (m), 882 (m), 855 (m), 812 (m), 718 (m), 632 (m), 590 (m), 562 (st), 540 (schw), $505 \text{ cm}^{-1} \text{ (schw)}$. - 19 F-NMR: $\text{CF}_3\delta - +77.0 \pm 0.4 \text{ ppm}$, $\text{SF}_A - 60$, $\text{SF}_B - 62.1$.

Analysen

	Summenformel (MolMasse)	C Cl(Br) F N S
1 a/ b	C ₃ ClF ₈ NSO (285.5)	Ber. 12.59 12.42 53.24 4.97 11.23 Gef. 12.6 12.5 52.8 4.9 11.2
2	C ₃ ClF ₈ NS ₂ O ₄ (365.6)	Ber. 9.85 9.70 41.58 3.83 17.54 Gef. 9.8 9.5 41.6 3.8 17.5
3	C3ClF8NS (296.6)	Ber. 13.35 13.15 56.42 5.20 11.87 Gef. 13.5 13.2 56.5 5.2 11.9
4	C ₃ BrF ₈ NS (313.9)	Ber. 11.47 (25.45) 48.42 10.21 Gef. 11.6 (25.0) 49.5 10.5
5	C ₃ ClF ₈ NSO (285.5)	Ber. 12.59 12.42 53.24 4.97 11.23 Gef. 12.6 12.4 53.0 5.0 11.0
6	C3ClF8NS2O4 (365.6)	Ber. 9.85 9.70 41.58 3.83 17.54 Gef. 10.0 9.5 42.0 4.0 17.5
		[77/74]